Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003493

RESUMEN

Dopamine (DA)'s relationship with addiction is complex, and the related pathways in the mesocorticolimbic system are used to deliver DA, regulating both behavioral and perceptual actions. Specifically, the mesolimbic pathway connecting the ventral tegmental area (VTA) and the nucleus accumbens (NAc) is crucial in regulating memory, emotion, motivation, and behavior due to its responsibility to modulate dopamine. To better investigate the relationship between DA and addiction, more advanced mapping methods are necessary to monitor its production and propagation accurately and efficiently. In this study, we incorporate dLight1.2 adeno-associated virus (AAV) into our latest CMOS (complementary metal-oxide semiconductor) imaging platform to investigate the effects of two pharmacological substances, morphine and cocaine, in the NAc using adult mice. By implanting our self-fabricated CMOS imaging device into the deep brain, fluorescence imaging of the NAc using the dLight1.2 AAV allows for the visualization of DA molecules delivered from the VTA in real time. Our results suggest that changes in extracellular DA can be observed with this adapted system, showing potential for new applications and methods for approaching addiction studies. Additionally, we can identify the unique characteristic trend of DA release for both morphine and cocaine, further validating the underlying biochemical mechanisms used to modulate dopaminergic activation.


Asunto(s)
Cocaína , Ratones , Animales , Dopamina/metabolismo , Morfina/farmacología , Morfina/metabolismo , Núcleo Accumbens/metabolismo , Área Tegmental Ventral/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768606

RESUMEN

Advancing the understanding of the relationship between perinatal nicotine addiction and the reward mechanism of the brain is crucial for uncovering and implementing new treatments for addiction control and prevention. The mesolimbic pathway of the brain, also known as the reward pathway, consists of two main areas that regulate dopamine (DA) and addiction-related behaviors. The ventral tegmental area (VTA) releases DA when stimulated, causing the propagation of neuronal firing along the pathway. This ends in the release of DA into the extracellular space of the nucleus accumbens (NAc), which is directly modulated by the uptake of DA. Much research has been conducted on the effects of nicotine addiction, but little research has been conducted concerning nicotine addiction and the mesolimbic pathway regarding maturation due to the small brain size. In this study, we apply our novel microstimulation experimental system to rat pups that have been perinatally exposed to nicotine. By using our self-fabricated photo-stimulation (PS) device, we can stimulate the VTA and collect dialysate, which is then used to estimate DA released into the NAc. The proposed platform has demonstrated the potential to monitor neural pathways as the pups mature.


Asunto(s)
Nicotina , Tabaquismo , Ratas , Animales , Nicotina/farmacología , Nicotina/metabolismo , Área Tegmental Ventral/metabolismo , Tabaquismo/metabolismo , Optogenética , Núcleo Accumbens/metabolismo , Neuronas/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...